Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemistryOpen ; 12(6): e202300060, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37259697

RESUMO

A heterogenized alternative to the homogeneous precapture of CO2 with amines and subsequent hydrogenation to MeOH was developed using aminated silica and a Ru-MACHOTM catalyst. Commercial mesoporous silica was modified with three different amino-silane monomers and used as support for the Ru catalyst. These composites were studied by TEM and solid-state NMR spectroscopy before and after the catalytic reaction. These catalytic reactions were conducted at 155 °C at a H2 and CO2 pressures of 75 and 2 bar, respectively, with the heterogeneous system (gas-solid) being probed with gas-phase infrared spectroscopy used to quantify the resulting products. High turnover number (TON) values were observed for the samples aminated with secondary amines.

2.
Plant Cell ; 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36215679

RESUMO

The biopolymer lignin is deposited in the cell walls of vascular cells and is essential for long-distance water conduction and structural support in plants. Different vascular cell types contain distinct and conserved lignin chemistries, each with specific aromatic and aliphatic substitutions. Yet, the biological role of this conserved and specific lignin chemistry in each cell type remains unclear. Here, we investigated the roles of this lignin biochemical specificity for cellular functions by producing single cell analyses for three cell morphotypes of tracheary elements, which all allow sap conduction but differ in their morphology. We determined that specific lignin chemistries accumulate in each cell type. Moreover, lignin accumulated dynamically, increasing in quantity and changing in composition, to alter the cell wall biomechanics during cell maturation. For similar aromatic substitutions, residues with alcohol aliphatic functions increased stiffness whereas aldehydes increased flexibility of the cell wall. Modifying this lignin biochemical specificity and the sequence of its formation impaired the cell wall biomechanics of each morphotype and consequently hindered sap conduction and drought recovery. Together, our results demonstrate that each sap-conducting vascular cell type distinctly controls their lignin biochemistry to adjust their biomechanics and hydraulic properties to face developmental and environmental constraints.

3.
ACS Omega ; 5(39): 25371-25380, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33043217

RESUMO

Zeolites with appropriately narrow pore apertures can kinetically enhance the selective adsorption of CO2 over N2. Here, we showed that the exchangeable cations (e.g., Na+ or K+) on zeolite ZK-4 play an important role in the CO2 selectivity. Zeolites NaK ZK-4 with Si/Al = 1.8-2.8 had very high CO2 selectivity when an intermediate number of the exchangeable cations were K+ (the rest being Na+). Zeolites NaK ZK-4 with Si/Al = 1.8 had high CO2 uptake capacity and very high CO2-over-N2 selectivity (1190). Zeolite NaK ZK-4 with Si/Al = 2.3 and 2.8 also had enhanced CO2 selectivity with an intermediate number of K+ cations. The high CO2 selectivity was related to the K+ cation in the 8-rings of the α-cage, together with Na+ cations in the 6-ring, obstructing the diffusion of N2 throughout the zeolite. The positions of the K+ cation in the 8-ring moved slightly (max 0.2 Å) toward the center of the α-cage upon the adsorption of CO2, as revealed by in situ X-ray diffraction. The CO2-over-N2 selectivity was somewhat reduced when the number of K+ cations approached 100%. This was possibly due to the shift in the K+ cation positions in the 8-ring when the number of Na+ was going toward 0%, allowing N2 diffusion through the 8-ring. According to in situ infrared spectroscopy, the amount of chemisorbed CO2 was reduced on zeolite ZK-4s with increasing Si/Al ratio. In the context of potential applications, a kinetically enhanced selection of CO2 could be relevant for applications in carbon capture and bio- and natural gas upgrading.

4.
RSC Adv ; 10(58): 35356-35365, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35515653

RESUMO

We investigated the hydride reduction of tetragonal BaTiO3 using LiH. The reactions employed molar H : BaTiO3 ratios of 1.2, 3, and 10 and variable temperatures up to 700 °C. The air-stable reduced products were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy, thermogravimetric analysis (TGA), X-ray fluorescence (XRF), and 1H magic-angle spinning (MAS) NMR spectroscopy. Effective reduction, as indicated by the formation of dark blue to black colored, cubic-phased, products was observed at temperatures as low as 300 °C. The product obtained at 300 °C corresponded to oxyhydride BaTiO∼2.9H∼0.1, whereas reduction at higher temperatures resulted in simultaneous O defect formation, BaTiO2.9-x H0.1□ x , and eventually - at temperatures above 450 °C - to samples void of hydridic H. Concomitantly, the particles of samples reduced at high temperatures (500-600 °C) display substantial surface alteration, which is interpreted as the formation of a TiO x (OH) y shell, and sintering. Diffuse reflectance UV-VIS spectroscopy shows broad absorption in the VIS-NIR region, which is indicative of the presence of n-type free charge carriers. The size of the intrinsic band gap (∼3.2 eV) appears only slightly altered. Mott-Schottky measurements confirm the n-type conductivity and reveal shifts of the conduction band edge in the LiH reduced samples. Thus LiH appears as a versatile reagent to produce various distinct forms of reduced BaTiO3 with tailored electronic properties.

5.
Nanoscale ; 11(41): 19278-19284, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31312823

RESUMO

Inspired by the Bogolanfini dyeing technique, we report how flexible nanofibrillated cellulose (CNF) films can be functionalized and patterned by surface-bound nanoparticles of hydrolyzable tannins and multivalent metal ions with tunable colors. Molecular dynamics simulations show that gallic acid (GA) and ellagic acid (EA) rapidly adsorb and assemble on the CNF surface, and atomic force microscopy confirms that nanosized GA assemblies cover the surface of the CNF. CNF films were patterned with tannin-metal ion nanoparticles by an in-fibre reaction between the pre-impregnated tannin and the metal ions in the printing ink. Spectroscopic studies show that the FeIII/II ions interact with GA and form surface-bound, stable GA-FeIII/II nanoparticles. The functionalization and patterning of CNF films with metal ion-hydrolyzable tannin nanoparticles is a versatile route to functionalize films based on renewable materials and of interest for biomedical and environmental applications.

6.
Materials (Basel) ; 12(11)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174261

RESUMO

The applications of silicon carbide (SiC) include lightweight materials with thermal shock resistance. In this study, core-shell C-SiC particles were synthesized by compacting and rapidly heating a hydrochar from glucose by using strong pulsed currents and infiltration of silicon vapor. Hollow particles of SiC formed on removing the carbon template. In contrast to related studies, we detected not only the pure 3C polytype (ß-SiC) but also significant amounts of the 2H or the 6H polytypes (α-SiC) in the SiC.

7.
Angew Chem Int Ed Engl ; 58(30): 10230-10235, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31116498

RESUMO

Understanding the molecular-level mechanisms of phase transformation in solids is of fundamental interest for functional materials such as zeolites. Two-dimensional (2D) zeolites, when used as shape-selective catalysts, can offer improved access to the catalytically active sites and a shortened diffusion length in comparison with their 3D analogues. However, few materials are known to maintain both their intralayer microporosity and structure during calcination for organic structure-directing agent (SDA) removal. Herein we report that PST-9, a new 2D zeolite which has been synthesized via the multiple inorganic cation approach and fulfills the requirements for true layered zeolites, can be transformed into the small-pore zeolite EU-12 under its crystallization conditions through the single-layer folding process, but not through the traditional dissolution/recrystallization route. We also show that zeolite crystal growth pathway can differ according to the type of organic SDAs employed.

8.
Materials (Basel) ; 11(9)2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213057

RESUMO

Body-fluid-exposed bioactive glasses (BGs) integrate with living tissues due to the formation of a biomimetic surface layer of calcium hydroxy-carbonate apatite (HCA) with a close composition to bone mineral. Vast efforts have been spent to understand the mechanisms underlying in vitro apatite mineralization, as either formed by direct precipitation from supersaturated solutions, or from BG substrates in a simulated body fluid (SBF). Formally, these two scenarios are distinct and have hitherto been discussed as such. Herein, we contrast them and identify several shared features. We monitored the formation of amorphous calcium phosphate (ACP) and its crystallization into HCA from a Na 2 O⁻CaO⁻SiO 2 ⁻P 2 O 5 glass exposed to SBF for variable periods out to 28 days. The HCA growth was assessed semi-quantitatively by Fourier transform infrared spectroscopy and powder X-ray diffraction, with the evolution of the relative apatite content for increasing SBF-exposure periods evaluated against trends in Ca and P concentrations in the accompanying solutions. This revealed a sigmoidal apatite growth behavior, well-known to apply to spontaneously precipitated apatite. The results are discussed in relation to the prevailing mechanism proposed for in vitro HCA formation from silicate-based BGs, where we highlight largely simultaneous growth processes of ACP and HCA.

9.
Langmuir ; 34(26): 7708-7713, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29847140

RESUMO

Carbonyl sulfide (COS) reacts slowly with amines in the aqueous solutions used to absorb CO2 from natural gas and flue gas and can also deactivate certain aqueous amines. The effects of COS on amines tethered to porous silica, however, have not been investigated before. Hence, the adsorption of COS on aminopropyl groups tethered to porous silica was studied using in situ IR spectroscopy. COS chemisorbed mainly and reversibly as propylammonium propylthiocarbamate ion pairs [R-NH(C═O)S-+H3N-R] under dry conditions. In addition, a small amount of another chemisorbed species formed slowly and irreversibly. Nevertheless, the CO2 capacities of the adsorbents were fully retained after COS was desorbed.

10.
Environ Microbiol ; 20(8): 2796-2808, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29614210

RESUMO

In aquatic ecosystems, microplastics are a relatively new anthropogenic substrate that can readily be colonized by biofilm-forming organisms. To examine the effects of substrate type on microbial community assembly, we exposed ambient Baltic bacterioplankton to plastic substrates commonly found in marine environments (polyethylene, polypropylene and polystyrene) as well as native (cellulose) and inert (glass beads) particles for 2 weeks under controlled conditions. The source microbial communities and those of the biofilms were analyzed by Illumina sequencing of the 16S rRNA gene libraries. All biofilm communities displayed lower diversity and evenness compared with the source community, suggesting substrate-driven selection. Moreover, the plastics-associated communities were distinctly different from those on the non-plastic substrates. Whereas plastics hosted greater than twofold higher abundance of Burkholderiales, the non-plastic substrates had a significantly higher proportion of Actinobacteria and Cytophagia. Variation in the community structure, but not the cell abundance, across the treatments was strongly linked to the substrate hydrophobicity. Thus, microplastics host distinct bacterial communities, at least during early successional stages.


Assuntos
Bactérias/isolamento & purificação , Plásticos , Actinobacteria/isolamento & purificação , Bactérias/genética , Bacteroidetes/isolamento & purificação , Biofilmes , Burkholderiales/isolamento & purificação , Interações Hidrofóbicas e Hidrofílicas , Microbiota , Plâncton/genética , Plâncton/isolamento & purificação , RNA Ribossômico 16S/genética
11.
Langmuir ; 32(45): 11789-11798, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27797215

RESUMO

Pure silica zeolites are potentially hydrophobic and have therefore been considered to be interesting candidates for separating alcohols, e.g., 1-butanol, from water. Zeolites are traditionally synthesized at high pH, leading to the formation of intracrystalline defects in the form of silanol defects in the framework. These silanol groups introduce polar adsorption sites into the framework, potentially reducing the adsorption selectivity toward alcohols in alcohol/water mixtures. In contrast, zeolites prepared at neutral pH using the fluoride route contain significantly fewer defects. Such crystals should show a much higher butanol/water selectivity than crystals prepared in traditional hydroxide (OH-) media. Moreover, silanol groups are present at the external surface of the zeolite crystals; therefore, minimizing the external surface of the studied adsorbent is important. In this work, we determine adsorption isotherms of 1-butanol and water in silicalite-1 films prepared in a fluoride (F-) medium using in situ attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. This film was composed of well intergrown, plate-shaped b-oriented crystals, resulting in a low external area. Single-component adsorption isotherms of 1-butanol and water were determined in the temperature range of 35-80 °C. The 1-butanol isotherms were typical for an adsorbate showing a high affinity for a microporous material and a large increase in the amount adsorbed at low partial pressures of 1-butanol. The Langmuir-Freundlich model was successfully fitted to the 1-butanol isotherms, and the heat of adsorption was determined. Water showed a very low affinity for the adsorbent, and the amounts adsorbed were very similar to previous reports for large silicalite-1 crystals prepared in a fluoride medium. The sample also adsorbed much less water than did a reference silicalite-1(OH-) film containing a high density of internal defects.The results show that silicalite-1 films prepared in a F- medium with a low density of defects and external area are very promising for the selective recovery of 1-butanol from aqueous solutions.

12.
Phys Chem Chem Phys ; 18(24): 16080-3, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27251457

RESUMO

The|Na10.2KCs0.8|8[Al12Si12O48]8(Fm3[combining macron]c)-LTA zeolite adsorbs CO2-over-CH4 with a high selectivity (over 1500). The uptake of carbon dioxide is also high (3.31 mmol g(-1), 293 K, 101 kPa). This form of zeolite A is a very promising adsorbent for applications such as biogas upgrading, where keeping the adsorption of methane to a minimum is crucial.

13.
Langmuir ; 31(17): 4887-94, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25871262

RESUMO

Biobutanol produced by, e.g., acetone-butanol-ethanol (ABE) fermentation is a promising alternative to petroleum-based chemicals as, e.g., solvent and fuel. Recovery of butanol from dilute fermentation broths by hydrophobic membranes and adsorbents has been identified as a promising route. In this work, the adsorption of water and butanol vapor in a silicalite-1 film was studied using in situ attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy to better understand the adsorption properties of silicalite-1 membranes and adsorbents. Single-component adsorption isotherms were determined in the temperature range of 35-120 °C, and the Langmuir model was successfully fitted to the experimental data. The adsorption of butanol is very favorable compared to that of water. When the silicalite-1 film was exposed to a butanol/water vapor mixture with 15 mol % butanol (which is the vapor composition of an aqueous solution containing 2 wt % butanol, a typical concentration in an ABE fermentation broth, i.e., the composition of the gas obtained from gas stripping of an ABE broth) at 35 °C, the adsorption selectivity toward butanol was as high as 107. These results confirm that silicalite-1 quite selectively adsorbs hydrocarbons from vapor mixtures. To the best of our knowledge, this is the first comprehensive study on the adsorption of water and butanol in silicalite-1 from vapor phase.

14.
Langmuir ; 30(32): 9682-90, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25072512

RESUMO

Adsorbents with high capacity and selectivity for adsorption of CO2 are currently being investigated for applications in adsorption-driven separation of CO2 from flue gas. An adsorbent with a particularly high CO2-over-N2 selectivity and high capacity was tested here. Zeolite ZK-4 (Si:Al ∼ 1.3:1), which had the same structure as zeolite A (LTA), showed a high CO2 capacity of 4.85 mmol/g (273 K, 101 kPa) in its Na(+) form. When approximately 26 at. % of the extraframework cations were exchanged for K(+) (NaK-ZK-4), the material still adsorbed a large amount of CO2 (4.35 mmol/g, 273 K, 101 kPa), but the N2 uptake became negligible (<0.03 mmol/g, 273 K, 101 kPa). The majority of the CO2 was physisorbed on zeolite ZK-4 as quantified by consecutive volumetric adsorption measurements. The rate of physisorption of CO2 was fast, even for the highly selective sample. The molecular details of the sorption of CO2 were revealed as well. Computer modeling (Monte Carlo, molecular dynamics simulations, and quantum chemical calculations) allowed us to partly predict the behavior of fully K(+) exchanged zeolite K-ZK-4 upon adsorption of CO2 and N2 for Si:Al ratios up to 4:1. Zeolite K-ZK-4 with Si:Al ratios below 2.5:1 restricted the diffusion of CO2 and N2 across the cages. These simulations could not probe the delicate details of the molecular sieving of CO2 over N2. Still, this study indicates that zeolites NaK-ZK-4 and K-ZK-4 could be appealing adsorbents with high CO2 uptake (∼4 mmol/g, 101 kPa, 273 K) and a kinetically enhanced CO2-over-N2 selectivity.

15.
Angew Chem Int Ed Engl ; 53(14): 3608-11, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24590597

RESUMO

A new porous vanadoborate was synthesized by employing the scale chemistry theory with the vanadoborate cluster V10B28. The twofold interpenetrated lvt network was assembled with zinc-containing elliptical vanadoborate clusters and Zn polyhedra. The single lvt framework contains a three-dimensional 38×38×20 ring channel system with the pore size (24.7×12.7 Å) reaching the mesoscale, thus indicating the possibility of constructing 3D ordered mesopores with vanadoborate clusters. The porosity of the SUT-7 structure was confirmed by CO2 adsorption of the as-synthesized materials.

16.
Langmuir ; 29(38): 12003-12, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23971901

RESUMO

A method to form ordered mesoporous silica based on the use of folate supramolecular templates has been developed. Evidence based on in situ small-angle X-ray scattering (SAXS), electron microscopy, infrared spectroscopy, and in situ conductivity measurements are used to investigate the organic-inorganic interactions and synthesis mechanism. The behavior of folate molecules in solution differs distinctively from that of surfactants commonly used for the preparation of ordered mesoporous silica phases, notably with the absence of a critical micellar concentration. In situ SAXS studies reveal fluctuations in X-ray scattering intensities consistent with the condensation of the silica precursor surrounding the folate template and the growth of the silica mesostructure in the initial stages. High-angle X-ray diffraction shows that the folate template is well-ordered within the pores even after a few minutes of synthesis. Direct structural data for the self-assembly of folates into chiral tetramers within the pores of mesoporous silica provide evidence for the in register stacking of folate tetramers, resulting in a chiral surface of rotated tetramers, with a rotation angle of 30°. Additionally, the self-assembled folates within pores were capable of adsorbing a considerable amount of CO2 gas through the cavity space of the tetramers. The study demonstrates the validity of using a naturally occurring template to produce relevant and functional mesoporous materials.


Assuntos
Ácido Fólico/química , Dióxido de Silício/química , Espalhamento a Baixo Ângulo , Difração de Raios X
17.
PLoS One ; 7(10): e45828, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049689

RESUMO

The formation of hybrids of nanofibrillated cellulose and titania nanoparticles in aqueous media has been studied. Their transparency and mechanical behavior have been assessed by spectrophotometry and nanoindentation. The results show that limiting the titania nanoparticle concentration below 16 vol% yields homogeneous hybrids with a very high Young's modulus and hardness, of up to 44 GPa and 3.4 GPa, respectively, and an optical transmittance above 80%. Electron microscopy shows that higher nanoparticle contents result in agglomeration and an inhomogeneous hybrid nanostructure with a concomitant reduction of hardness and optical transmittance. Infrared spectroscopy suggests that the nanostructure of the hybrids is controlled by electrostatic adsorption of the titania nanoparticles on the negatively charged nanocellulose surfaces.


Assuntos
Celulose/química , Nanocompostos/química , Nanopartículas/química , Titânio/química , Teste de Materiais , Microscopia de Força Atômica , Microscopia Eletrônica , Nanocompostos/ultraestrutura , Nanopartículas/ultraestrutura , Espectrofotometria , Eletricidade Estática
18.
Chemistry ; 18(37): 11630-40, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-22865659

RESUMO

We report on a new series of isoreticular frameworks based on zinc and 2-substituted imidazolate-4-amide-5-imidate (IFP-1-4, IFP = imidazolate framework Potsdam) that form one-dimensional, microporous hexagonal channels. Varying R in the 2-substitued linker (R = Me (IFP-1), Cl (IFP-2), Br (IFP-3), Et (IFP-4)) allowed the channel diameter (4.0-1.7 Å), the polarisability and functionality of the channel walls to be tuned. Frameworks IFP-2, IFP-3 and IFP-4 are isostructural to previously reported IFP-1. The structures of IFP-2 and IFP-3 were solved by X-ray crystallographic analyses. The structure of IFP-4 was determined by a combination of PXRD and structure modelling and was confirmed by IR spectroscopy and (1)H MAS and (13)C CP-MAS NMR spectroscopy. All IFPs showed high thermal stability (345-400 °C); IFP-1 and IFP-4 were stable in boiling water for 7 d. A detailed porosity analysis was performed on the basis of adsorption measurements by using various gases. The potential of the materials to undergo specific interactions with CO(2) was investigated by measuring the isosteric heats of adsorption. The capacity to adsorb CH(4) (at 298 K), CO(2) (at 298 K) and H(2) (at 77 K) at high pressure were also investigated. In situ IR spectroscopy showed that CO(2) is physisorbed on IFP-1-4 under dry conditions and that both CO(2) and H(2)O are physisorbed on IFP-1 under moist conditions.


Assuntos
Amidas/química , Imidazóis/química , Imidoésteres/química , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Zinco/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Porosidade , Propriedades de Superfície
19.
Langmuir ; 27(17): 11118-28, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21774480

RESUMO

We studied equilibrium adsorption and uptake kinetics and identified molecular species that formed during sorption of carbon dioxide on amine-modified silica. Bicontinuous silicas (AMS-6 and MCM-48) were postsynthetically modified with (3-aminopropyl)triethoxysilane or (3-aminopropyl)methyldiethoxysilane, and amine-modified AMS-6 adsorbed more CO(2) than did amine-modified MCM-48. By in situ FTIR spectroscopy, we showed that the amine groups reacted with CO(2) and formed ammonium carbamate ion pairs as well as carbamic acids under both dry and moist conditions. The carbamic acid was stabilized by hydrogen bonds, and ammonium carbamate ion pairs formed preferably on sorbents with high densities of amine groups. Under dry conditions, silylpropylcarbamate formed, slowly, by condensing carbamic acid and silanol groups. The ratio of ammonium carbamate ion pairs to silylpropylcarbamate was higher for samples with high amine contents than samples with low amine contents. Bicarbonates or carbonates did not form under dry or moist conditions. The uptake of CO(2) was enhanced in the presence of water, which was rationalized by the observed release of additional amine groups under these conditions and related formation of ammonium carbamate ion pairs. Distinct evidence for a fourth and irreversibly formed moiety was observed under sorption of CO(2) under dry conditions. Significant amounts of physisorbed, linear CO(2) were detected at relatively high partial pressures of CO(2), such that they could adsorb only after the reactive amine groups were consumed.


Assuntos
Dióxido de Carbono/química , Propilaminas/química , Dióxido de Silício/química , Adsorção , Cinética , Estrutura Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...